Skip to content

Building a Gigascale ML Feature Store with Redis, Binary Serialization, String Hashing, and Compression

When a company with millions of consumers such as DoorDash builds machine learning (ML) models, the amount of feature data can grow to billions of records with millions actively retrieved during model inference under low latency constraints.

Improving Online Experiment Capacity by 4X with Parallelization and Increased Sensitivity

Data-driven companies measure real customer reactions to determine the efficacy of new product features, but the inability to run these experiments simultaneously and on mutually exclusive groups significantly slows down development.

Using a Human-in-the-Loop to Overcome the Cold Start Problem in Menu Item Tagging

Companies with large digital catalogs often have lots of free text data about their items, but very few actual labels, making it difficult to analyze the data and develop new features. 

Building a system that can support machine learning (ML)-powered search and discovery features while simultaneously being interpretable enough for business users to develop curated experiences is difficult.